
N90-27314

A MODEL FOR A SPACE SHUTTLE SAFING AND FAILURE-DETECTION EXPERT

Daphna Zeilingold and John Hoey

Rockwell International Corporation

Space Transportation Systems Division
12214 Lakewood Blvd., Downey, CA 90241

ABSTRACT

The safing and failure-detection expert (SAFE) is a prototype for a malfunction detec-

tion, diagnosis, and safing system for the atmospheric revitalization subsystem (ARS) in the
Space Shuttle orbiter. SAFE, whose knowledge was extracted from expert-provided heuristics

and documented procedures, automatically manages all phases of failure handling: detection,

diagnosis, testing procedures, and recovery instructions. The SAFE architecture allows it to
handle correctly sensor failures and multiple malfunctions. Since SAFE is highly interactive,
it was used as a test bed for the evaluation of various advanced human-computer interface

(HCI) techniques. The use of such expert systems in the next generation of space vehicles
would increase their reliability and autonomy to levels not achievable before.

INTRODUCTION

The fault detection, isolation, and recovery (FDIR) process on board the orbiter is

lengthy and tedious (Figure 1). The crew is surrounded by diverse inputs: gauges, displays,

warning lights, alarms, caution and warning messages, and ground control communications.
If an anomaly occurs, the crew must follow flow chart-like malfunction procedures (essen-

tially fault trees) to isolate the problem and reconfigure the vehicle to a safe state. The crew
must locate the appropriate malfunction ,procedures in a voluminous manual, then find the

cockpit switches that must be manipulated--and do it all in a timely manner in an emergency.

Automation of this process clearly would have many benefits. It would speed up fault
isolation and make it more consistent and reliable; it would reduce the crew's work load and

alleviate the loss-of-efficiency problem on longer missions; and it could, as confidence in the

system is gained, reduce training and ground support requirements.

Beyond its immediate benefits, such a system would introduce into space vehicle man-

agement a new technology with the potential for substantially increasing vehicle autonomy--
autonomy that will be essential when space flights such as the Mars mission are undertaken.
Because of the communication time lag, complete responsibility for vehicle "health" will have

to be assumed by on-board functions, and mission length and complexity will make automa-

tion mandatory.

PRECEDING PAGE BLANK NOT FILMED

351

CURRENT FAULT DIAGNOSIS

SWITCH PANEL SYSTEM

MANAGEMENT

OFF ALERTS

ON ON ON

MALFUNCTION

_ PROCEDURES
_) _]lili. iIII 1

iili'l_lFAULT DETECTION I llllil

ANNUNCIATION /_/_ CAUTION & WARNING

GROUND SUPPORT _ NK

PROPOSED FAULT DIAGNOSIS

SYSTEM FEATURES

• SUBSYSTEM SCHEMATICS WITH

FAILED COMPONENT HIGHLIGHTED

• EXPLANATION

• ON-LINE HELP

• CREW FEEDBACK

• ACTIVITIES LOG & DATA SNAPSHOTS

• DUPLICATE SYSTEM ON GROUND

i /_t _ RECOVERY

SENSORDATAll/ INSTRUCTIONS
"ll il

isw"c""A"'L
o, o,,
0FF OFF OFF

Ioi,

Figure 1. Comparison of Current and Proposed Fault Diagnosis

The SAFE project's objective was twofold: to investigate the use of expert system tech-

nology for on-board malfunction diagnosis through the development and prototyping of the
software architecture; to experiment with various user interface techniques that would provide
easy and effective crew interaction.

SAFE ARCHITECTURE

The paradigm used by SAFE for diagnosis is the "shallow-reasoning" expert system,

which employs expert heuristics that map sensor signatures to component malfunctions. Its

advantages are that it is fast, conceptually easy to understand, and lends itself efficiently to a

rule-based structure. It reflects the way diagnosis is now done: a mixture of malfunction pro-
cedures and the expertise of the subsystem people on the ground who advise the crew. A dis-

advantage, which requires further research, is that such a system cannot detect an unantici-

pated failure, since it has no understanding on any level of how the modeled system works.

(An attempt to do diagnosis with a model-based paradigm was deferred because of severe per-
formance problems.)

As shown in Figure 2, components of the SAFE system are the knowledge base (rules
and facts), the user interface (UI), and the ARS simulator (SIM) and the simulator interface
(SI). The inference engine is OPS83, which is a forward chainer--i.e., data-driven. The user
interface is written in Ada and communicates with OPS83 via VAX mailboxes.

352

USER
INTERFACE

T

I SIMULATOR
INTERFACE

_I FACTSRULES

!
r

SIMULATOR

Figure 2. SAFE Overall Architecture

ARS Model

The system model used by SAFE represents a simplified view of the ARS of the Shuttle
orbiter environmental control and life support system (ECLSS). ARS was chosen because of

its criticality and because it is both complex enough to provide a variety of malfunctions and

simple enough to be easily understood by knowledge engineers.

The system maintains a breathable atmosphere, with total pressure about 14.7 psi and

partial oxygen pressure between 2.9 and 3.4 psi. The main components of the model are the

oxygen and nitrogen supply, check valve, sensors and controller for the partial pressure of

oxygen (ppO2), and the control valve and its actuator. When the ppO 2 exceeds 3.4 psi, it is

detected by the ppO 2 sensors, and the ppO 2 controller causes the control valve actuator to
switch to the OPEN position. This opens the control valve, and nitrogen flows into the cabin

regulator. The nitrogen applies reverse pressure to the check valve, stopping the oxygen flow.

Crew breathing depletes the existing oxygen, and eventually the partial pressure drops below
2.9 psi. The controller valve is then closed and the nitrogen flow stops, enabling oxygen to

enter the cabin (Figure 3).

The failures that can be detected by the existing prototype are in the ppO 2 sensors and

controller, the control valve, the oxygen and cabin regulators, the oxygen pressure sensor, and

the cabin pressure sensor.

SAFE Operation

As long as no failure is detected, the user interface displays the sensor values on a user-
oriented display. For prototype verification purposes, a software simulator for the ARS was

written by using the procedural capabilities of OPS83. The simulator supplies the sensor data.

Twelve malfunctions have been incorporated into the simulator, and the demonstrator can

choose and inject one through the simulator interface (refer to the simulator section).

353

14.7 PSi

CABIN CABIN
PRESSURE PRESSURE
REGULATOR MANUAL

SHUTOFF

"- -_---_ N
INPUT

021N2
CABIN
PRESSURE
SENSOR

OUTPUT INPUT 02

02 100 PSI 02 02 CHECK 02 RESTRICTOR SUPPLY
PRESSURE 02 REGULATOR PRESSURE VALVE

VALVE & /--'A/-_/-71 t

FILTER _O 2
_ ' I FSI 1.4- []]1]] / _)TANK
=:'_n. u J _,,,, 02 FLOW 02 "'" _"

_j __j _;_;.L BENSOR F,LTER
,LICHECK

VALVE

I ..:"............i [] GARINPRESSURESENSOB

I _...i __,!!__::_o., L_ PPO_SENSORC
: PPO2I

I _,°,,_,L"°_....... TWO.STA.EN2 VALVE
I _;,_o_-_'""" PBESSUKE._BULATORSE.CTOR B_TANKS_.:Z._
I i _ _ N2 TANK PRESSUREI i._.M-_/
J _ N2 FLOW I _ I] F"-I I SET --SENSOR II --

S_NSOR I_ P i
IX] iFS[I"--llilll I'X_X_X_XT_ -- I

pN2CHE"_," t.I CK
021N2 IPI VALVE N2 TANK
PRESSURE N2 L CUT'" STORAGE L-_TANK]
CONTROLPReSsuRe....... ISO-LAi_dN
VALVE SENSOR VALVE

Figure 3. ECLSS 02/N 2 Pressurization System

Once the expert system has detected a malfunction, it notifies the user, instructing him

on how to perform a sating procedure to restore the system to an operational state. If, how-

ever, the symptoms are insufficient to uniquely identify the failure, the user can choose to run

tests to isolate the malfunction further. The appropriate steps for a test procedure are then

displayed. The expert system receives information like acknowledgments of actions taken or

requests for explanations through the user interface, which runs as a separate process from
the expert system. The expert system can continue to monitor sensor data while the user inter-

face is engaged in man-machine dialog.

SAFE Diagnosis Mechanism

A complete and well-defined architecture for a shallow-reasoning diagnosis and safing

system now exists. The entire process can be described as a cycle through the phases illus-
trated in Figure 4. The diagnosis activity is separated into sensor and nonsensor device failure

detection phases so that sensor problems can be found before the readings are relied upon to
diagnose other failures. The process involves the following steps:

• The sensor diagnosis rules are enabled. If a sensor is determined to be faulty or is suspected
of being faulty, it is so marked. This stage can generate a diagnosis for a failed sensor.

354

Figure 4. Major Phases of Rule-Based Architecture

• Next, the nonsensor diagnosis rules are enabled. Any rules that base their diagnosis on read-

ings from a sensor previously marked as possibly faulty are not enabled, so no diagnosis is
made on the basis of unreliable sensor data. This stage can generate a diagnosis for a failed

component.

• A diagnosis can be "final," meaning that the system has made as detailed an isolation pro-

cess as can be expected, or it can be "intermediate," meaning that tests can narrow it fur-

ther. The diagnosis then lists all the suspected components and their potential failure mode.

• If the diagnosis is not a final one and the user signals his interest in additional tests, test
rules are enabled to create a test procedure. The test procedure is a series of operational

instructions to the crew, the purpose of which is to reconfigure the subsystem in such a

manner as to permit further isolation of the fault.

• Once the test is completed, the resultant sensor data, coupled with knowledge of the prior

diagnosis, enable the system to determine which component really failed.

• If the diagnosis is as specific as possible or if the user chooses not to run any tests, safing

rules generate the appropriate safing procedure, which is a series of instructions on how to

reconfigure the system to ensure safe vehicle operation, with emphasis given to a safe return
home.

• The expert system creates the test and safing procedures dynamically, going from the cur-

rent system state to the desired one (e.g., it will not instruct to close a closed switch). It also
takes into account the flight history (e.g., if the backup system were activated due to a pre-

vious failure, there would be no backup system left and the emergency supply system would

have to be used).

355

• The user has to acknowledge the completion of every step of the testing or safing
procedure.

• When all safing actions are completed, the system suspends the diagnosis process to permit

all sensor values to converge to their nominal ranges. Otherwise, the failure that just

occurred might be reannunciated, since typically the sensor values would be out of range

for a while. This step is called "system stabilization." The approach is too simplistic; should
another failure occur, the user would not know about it until the system is stabilized. Other
solutions should be investigated.

• A mechanism for handling certain multiple malfunction situations is introduced. The mal-

functions are given two severity ratings. Throughout the diagnosis process, all diagnosis

rules for failures of similar or less criticality than that of the current diagnosis (i.e., the

diagnosis being handled) are disabled. If a more severe failure is detected, the current diag-

nosis is replaced by the new one and the user is instructed to take care of that one first. If,
after the safing, the "old" failure is still valid, it influences the sensor readings and eventu-

ally is rediagnosed by the expert system. In many cases, a switch is made to the backup sys-
tem, and failure of a component of the now-inactive system does not manifest itself. How-

ever, this approach works only for failures whose signatures are totally independent of each
other.

The knowledge base also contains a representation of the systems using OPS83 memory

elements. Employing this model, the expert system keeps track of the system's state. It is sepa-
rate from the simulator's model, and only the sensor information is copied from the simulator

to that model via the simulator interface. Thus the rule base has no access path to the failure
information in the simulator.

User Interface

The user interacts with SAFE and the simulator via a multilevel menu structure. Com-

munication is effected through the selection of menu and support icons using touch-panel
technology.

The user is able to monitor the ARS by viewing either a performance display or a sche-

matic display. The performance display provides a high-level picture of the system status by

displaying five color-coded dials that show the status of five critical parameters, by the

numerical values indicated as well as by the color of the needles as they swing into the various

safety levels on the dial faces. Also, several less critical parameters are represented in tabular
form.

The user may also view the status of the same parameters in a more hardware-oriented

manner by selecting a schematic view of the system. In this mode, the data appear alongside

the components of the relevant subsystem (in this prototype, the ARS), allowing the user to
view the physical relationships among the various components.

356

The usercanchooseanyof threesystemlogsby selectingtheappropriateicon: the Status

Log, which contains messages relevant to the status of the entire system; the Event Log,

which logs any change of state of the ARS subsystem; and the Message Log, which records all
communications between the system and the user. The logs are time-stamped and, when rele-

vant, color-coded to indicate the severity of the message. Between the graphic displays and the
different logs, the user has an opportunity to choose the level of detail that suits his needs. If

he is particularly interested in the ARS performance, he can look at the schematic view; but if

he is busy with other mission tasks, he may wish to see only the information in the Status
Log.

When a failure is detected by the expert system, the icons necessary to handle the situa-

tion appear on the screen, a color-coded message appears in the message window at the bot-
tom of the screen, and the DECtalk device annunciates the message. If the message is of low

severity, it is displayed in amber and annunciated once. However, if it is of high severity, it is
displayed in red and annunciated until the user acknowledges the message. At this point, the

user may do one of two things: safe the system or, if possible and time permits, test the sys-
tem to isolate the cause of the malfunction.

When the decision is made to safe the system or to perform a test before safing, the user

is guided every step of the way via the DECtalk, printed messages, and schematic displays of

the relevant cockpit panels with highlighted switches. If at any point the user wants to know

the motivation for the actions being recommended, an explanation icon is available. The

ensuing explanation is printed in the message window but is neither annunciated by the DEC-
talk nor recorded in the Message Log.

The communication scheme employed by the user interface to interact with the expert
system and SI is based on message passing. The first field of each message is a type field that

guides the message's interpretation by its receiver. This allows the message format to be flexi-
ble and extensible.

Simulator and Simulator Interface

The simulation model, though simplistic, yields results sufficient to provide a good test

bed for the prototype. It produces the values of 13 sensors, emulating the gradual changes

and fluctuations that characterize flows and pressure measurements.

When a demonstrator chooses to inject a failure into the system, the failure information
is transmitted from the user interface to the simulator interface, where it is converted into the

relevant simulator parameters. The simulator iterates constantly, creating sensor values and

logging them in the knowledge base, where the expert system can monitor them. Once the

simulator creates the right signature (which could take a number of cycles, since the simulator

gradually converges on the right sensor values), the proper rules generate the failure diagno-

sis. The expert system and the simulator interface are in constant communication with the
user interface via the VAX mailboxes.

357

Sincethe simulator is not a real part of the diagnosis system (existing only for testing

purposes), it was decided to completely isolate it from the other components. On the other
hand, it was desirable to separate the simulator from the details involved in its communica-

tion with the rest of SAFE. This approach allows the communication functions to be isolated

into a single module--the simulator interface module--that must be rewritten in order to
interface with real hardware. The module is responsible for converting relevant user inputs

into data the simulator can manipulate and reporting the simulated sensor readings to the

expert system. The expert system has no direct access to the simulator, so it is easy to verify

that it gets no data it would not receive under real circumstances.

Host Hardware and Software

The knowledge base, simulator, and simulator interface are implemented in OPS83, a

language targeted for rule writing. It has good pattern-matching capabilities, allows user cus-
tomization of the inference engine, and, because it is compiled, runs at a fairly high speed.

Having the simulator also written in OPS83, with its procedural capabilities, permits fast and

easy interaction between the simulator and the knowledge base.

The user interface is written in Ada. It runs on a Tektronix 4128 high-resolution graphics

work station connected to a VAX 11/785. An Elographics touch panel allows the user to com-

municate with the expert system via an icon-driven menu. This serves as the sole input device.

A Digital Equipment Corporation DECtalk voice synthesis unit annunciates all messages that

appear on the screen.

SUMMARY AND CONCLUSIONS

The architecture described in this paper could be used to automate the diagnosis and saf-

ing process for any subsystem of the orbiter by replacing the safing and diagnosis rules. Given
a good and cooperative expert, this would be a relatively straightforward process. It has some

basic capabilities for handling complex situations. Faulty sensor detection, done before the

nonsensor devices diagnosis, precludes detection based on erroneous data. The rating and

failure-interruption scheme is a first attempt to address the issues of multiple malfunctions
detection. The creation of dynamic test and safing procedures enables the expert system to

save time and minimize errors that could occur when redundant actions are possible.

Dynamic information exchange with the user interface gives the system flexibility and room
for expansion.

Many aspects of expert system technology application to fault detection, isolation, and

recovery require more investigation. A primary area of research is that of cooperative expert

systems that monitor all vehicle subsystems and exchange information. Such an architecture

must be developed before the complexity of the whole vehicle can be mastered.

358

Somediagnosis capabilities are still lacking. Among these are better handling of multiple

failures, mainly the inclusion of failures whose signatures interfere with each other; refine-
ment of the postsafing monitoring process; intermittent failure diagnosis; and recognition of

unexpected anomalous conditions that have not been encoded explicitly, at least to the extent

of notifying the user that the vehicle is not operating correctly and that the problem cannot be

diagnosed by the expert system.

The SAFE prototype has demonstrated the feasibility and viability of the technology

beyond just Space Shuttle applications. The same concepts can be applied to any on-board

automated FDIR system. This technology is destined to become a key component in the

design of next-generation space vehicles.

359

